

MT6360P Power Management IC Product Brief

Version: 1.0 Release date: 202

2023-09-18

The full datasheet is available with an NDA

Use of this document and any information contained therein is subject to the terms and conditions set forth in Exhibit 1. This document is subject to change without notice.

Version History

Version	Date	Description
1.0	2023-09-18	Official release

Table of Contents

Vers	n History ·····	·· 2
Table	of Contents	3
List o	Figures	3
List o	Tables ·····	3
1	Dverview ·····	
	.1 Features	
	.2 Applications	5
	.3 General Description	5
	.4 Ordering Information	6
	.5 Pin Assignments and Description	·· 7
2	lectrical Characteristics ·····	11
	.1 Absolute Maximum Ratings	11
	.2 Recommended Operating Range	11
	.3 Electrical Characteristics	12
3	ypical Operating Characteristics	25
	.1 Typical Operating Characteristics	25
4	AT6360P Packaging ·····	26
	.1 Outline Dimensions	
Exhi	t 1 Terms and Conditions	28

List of Figures

Figure 1-1. Ordering information	6
Figure 1-2. MT6360P WL-CSP-103B 4.64×4.14 (BSC) (top view)	7
Figure 3-1. Typical operating characteristics	
Figure 4-1. Package dimension	

List of Tables

Table 1-1. MT6360P pin description	.8
Table 2-1. Absolute maximum ratings	.1
Table 2-2. Electrical specifications	.2

1 Overview

1.1 Features

• Battery charger

- High-accuracy voltage/current regulation
- Average input current regulation (AICR): 0.1~3.25A in 50 mA steps
- Charge current regulation accuracy: ±5%
- Charge voltage regulation accuracy: ±0.5% (0~70°C)
- Synchronous 1.5 MHz fixed-frequency PWM controller with up to 95% duty cycle
- Thermal regulation and protection
- Over-temperature protection
- Input over-voltage protection
- $\,-\,$ IRQ output for communication via I^2C
- Automatic charging
- BATFET control to support ship mode, wake-up, and full system reset
- Resistance compensation from charger output to cell terminal
- USB OTG output voltage range: 4.85~5.825V
- D+/D- detection for BC1.2
- Micro-B ID pin rust
- Integrated ADCs for system monitoring (charger current, voltage, and temperature)
- Low battery protection from 2.7V to 3.8V for boost operation
- Initial VOREG set for relieve battery protection
- USB_PD
 - PD-compatible dual-role
 - Attach/Detach detection as host, device or dual-role port
 - Current capability definition and detection
 - Cable recognition
 - Supports alternate mode
 - Supports VCONN with programmable over-current protection (OCP)
 - Supports dead battery
 - Supports BIST mode
 - USB PD3.0
- Flash LED driver
 - Synchronous boost dual flash LED driver with dual independently-programmable LED current sources
 - Torch mode current: 25~400 mA in 12.5 mA steps per channel
 - I²C-programmable flash safety timer, from 64 ms to 2,432 ms with 32 ms/step
 - Flash LED1/LED2 short-circuit protection; output short-circuit protection
 - TXMask protection with dedicated FL_TXMASK pin
 - Shared charger/OTG as power stage
 - Independent torch bypass MOSFET from VSYS

- Strobe mode current: 50 mA ~ 1.5A in 12.5 mA steps or 25~750 mA in 6.25 mA steps per channel; up to 2.5A in total

- LDO
 - 6-channel LDO
 - LDO1 output current: 150 mA
 - LDO2/3 output current: 200 mA
 - LDO5 output current: 800 mA
 - LDO6 output current: 300 mA
 - LDO7 output current: 600 mA
- **RGB LED driver**
 - 3-channel LED driver
 - Sink current for 3 RGB LEDs: 24 mA/channel
 - Flash mode frequency range: 0.125~256 Hz
 - RGB_ISINK1 for CHG_VIN power food indicator
 - Supports register mode, flash mode, breath mode
- **Moonlight LED driver**
 - 5~150 mA sink type LED driver
 - Linear mode control
 - 5 mA/Step
- Buck
 - 2-channel buck
 - 0.3~1.3V programmable slew rate for voltage transitions
 - Output current capability: 3A
 - Supports sequenced off delay time selection
 - Input under-voltage lockout (UVLO)
 - Thermal shutdown and overload protection

1.2 **Applications**

- Cellular telephones
- Personal information appliances
- Tablet PCs
- Portable instruments
- Industrial HMI, desktop POS, KIOSK, digital signage

1.3 **General Description**

MT6360P is a highly-integrated smart power management IC which includes a single cell Li-Ion/Li-Polymer switching battery charger, a USB Type-C and power delivery (PD) controller, dual flash LED current sources, a RGB LED driver, two buck converters, and six LDOs for portable devices.

The switching charger integrates a synchronous PWM controller, power MOSFETs, input current sensing and input current regulation, high-accuracy voltage regulation, and charge termination circuitry. Besides, the charge current is regulated through the integrated sensing resistors. It also features USB on-the-go (OTG) support.

The USB Type-C and PD controller complies with the latest USB Type-C and PD standards. It integrates a complete Type-C transceiver including the Type-C termination resistors, Rp and Rd, and enables the USB Type-C detection including attach and orientation. It also integrates the physical layer of the USB BMC power delivery protocol, allowing power transfers and role swaps. The BMC PD function provides full support for alternate modes on the USB Type-C standard.

Dual independent current sources supply for each flash LED. The power for the current sources in strobe mode are from the CHG VMID pin, which is supplied from the charger in reverse boost mode, the same operation as OTG mode of the charger. The high-side current sources, allowing for grounded-cathode connection for LEDs, provide strobe mode current levels from 50 mA to 1.5A in a 12.5 mA step or from 25 mA to 750 mA in a 6.25 mA step, and torch mode current levels from 25 mA to 400 mA in a 12.5mA step. The two channels is able to support totally up to 2.5A.

The dual buck converter delivers a digitally programmable output 0.3V to 1.3V from an input voltage supply of 2.5V to 5.5V. The output voltage is programmed through an I²C interface capable of operating up to 3.4 MHz.

By using a proprietary architecture with synchronous rectification, BUCK1/2 are capable of delivering 3A continuously as PVIN > 3.1V.

LDO1 supplies power to finger print unit (VFP); LDO2 supplies power to the touch panel unit (VTP); LDO3 and LDO5 supply power to SD card and UFS card (VMC and VMCH); LDO6 and LDO7 supply power to DRAM (VMDDR and VDRAM2). These are in mobile phones and other hand-held devices. The output voltage is programmable via the I²C interface.

The RGB LED driver is a 3-channel smart LED string controller to drive three channels of LEDs with a sink current of up to 24 mA and a CHG VIN power good indicator with a sink current of up to 24 mA. All channels can be set independently via the I²C interface and are provided with three operation modes, register mode, flash mode and breath mode.

MT6360P is available in a WL-CSP-103B 4.64×4.14 (BSC) package.

1.4 **Ordering Information**

MT6360 P 1/A Package Type P:WL-CSP-103B4.64x4.14 (BSC)

Figure 1-1. Ordering information

Pin Assignments and Description 1.5

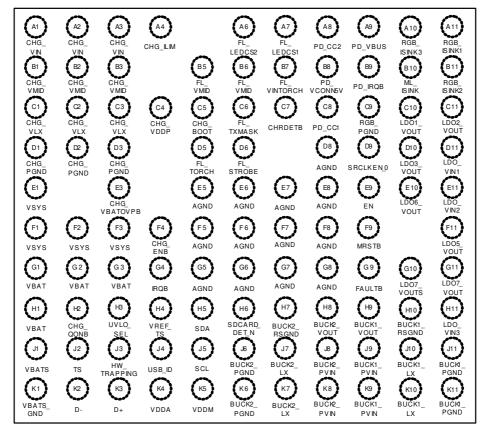


Figure 1-2. MT6360P WL-CSP-103B 4.64×4.14 (BSC) (top view)

	Table 1-1. MT6360P pin description						
Pin no.	Pin name	Pin description					
A1, A2, A3	CHG_VIN	Charger power input					
A4	CHG_ILIM	Input current limit setting pin A resistor is connected from CHG_ILIM pin to ground to set up the maximum input current limit. The actual input current limit is the lower value set through the CHG_ILIM pin and IAICR register bits.					
A6	FL_LEDCS2	High-side current source output 2 for flash LED2					
A7	FL_LEDCS1	High-side current source output 1 for flash LED1					
A8	PD_CC2	Type-C connector configuration channel (CC) 2 This is used to detect a cable plug event and determine the cable orientation.					
A9	PD_VBUS	CHRDETB detection and VBUS input for attach and detach detection when the device operates as an UFP port					
A10	RGB_ISINK3	RGB LED current sink output 3					
A11	RGB_ISINK1	RGB LED current sink output 1					
B1, B2, B3	CHG_VMID	Connection point between the reverse-blocking MOSFET and the high-side switching MOSFET					
B5, B6	FL_VMID	Flash LED driver power input for strobe mode Connect a 4.7μF ceramic capacitor between FL_VMID and ground.					
В7	FL_VINTORCH	Flash LED driver power input for torch mode					
B8	PD_VCONN5V	Regulated input voltage to power PD_CC pins as VCONN					
В9	PD_IRQB	Active-low open-drain interrupt output This requests the processor to check the registers.					
B10	ML_ISINK	Moonlight LED current sink output					
B11	RGB_ISINK2	RGB LED current sink output 2					
C1, C2, C3	CHG_VLX	Charger switch node for output inductor connection					
C4	CHG_VDDP	 Regulated output voltage to supply for the PWM low-side gate driver and the bootstrap capacitor Connect a 2.2µF ceramic capacitor between CHG_VDDP and ground. 1. If VBUS is plugged in, CHG_VDDP will be powered by CHG_VIN and regulated to 4.9V. 2. If VBUS is unplugged, the charger will operate in sleep mode and the CHG_VDDP voltage will be 0V. 					
C5	CHG_BOOT	Charger bootstrap voltage to supply the high-side MOSFET gate driver Connect a capacitor between CHG_BOOT and CHG_VLX.					
C6	FL_TXMASK	Configurable power amplifier synchronization input or configurable active-high torch mode enable Connect a 300kΩ internal pull-down resistor between FL_TXMASK and ground.					
C7	CHRDETB	CHG_VIN ready indication, open-drain output that indicates PD_VBUS is in					
C8	PD_CC1	Type-C connector configuration channel (CC) 1 This is used to detect a cable plug event and determine the cable orientation.					
С9	RGB_PGND	RGB ground Tie RGB_PGND and ground on the PCB.					
C10	LDO1_VOUT	LDO1 output					
C11	LDO2_VOUT	LDO2 output					
D1, D2, D3	CHG PGND	Charger ground					

Table 1-1, MT6360P pin description

Pin no.	Pin name	Pin description
		Tie CHG_PGND and ground on the PCB.
D5	FL_TORCH	Flash LED torch mode enable input
D6	FL STROBE	Flash LED strobe mode enable input
D8, E5, E6, E7, E8, F5,	_	
F6, F7, F8, G5, G6, G7,	AGND	Analog ground
G8		Tie AGND and ground on the PCB.
D9	SRCLKEN_0	Source clock enable on and LP control pin 0
D10	LDO3_VOUT	LDO3 output
D11	LDO_VIN1	LDO_VIN1 power input for LDO1, LDO2 and LDO3
		Connect a $2.2 \mu F$ ceramic capacitor between LDO_VIN1 and ground.
		System connection node
E1, F1, F2, F3	VSYS	Internal BATFET is connected between VSYS and VBAT. Connect a
		22μF ceramic capacitor between VSYS and ground.
		Battery over-voltage protection (BAT OVP) indication
E3	CHG_VBATOVPB	This is an open-drain and active-low output. It will be low if BAT OVP
		occurs; otherwise, it is high.
E9	EN	BUCK1, BUCK2, LDO6 and LDO7 enable control input
		When EN = low, all bucks and LDOs are turned off.
E10	LDO6_VOUT	LDO6 output
E11	LDO_VIN2	LDO_VIN2 power input for LDO5 and logic circuit of LDO6/7
		Connect a 2.2µF ceramic capacitor between LDO_VIN2 and ground.
F4	CHG_ENB	Charger enable input, active-low
F9	MRSTB	Manual reset input for hardware reset
F11	LDO5_VOUT	LDO5 output
		Charge current output node for battery connection
G1, G2, G3, H1	VBAT	The internal BATFET is connected between VSYS and VBAT. Connect a
		10μF ceramic capacitor between VBAT and ground.
G4	IRQB	Active-low open-drain interrupt output
		This requests the processor to read the registers.
G9	FAULTB	Indicates power not good of bucks and LDOs
C10		Active-low open-drain
G10	LDO7_VOUTS	LDO7 output voltage-sense input
G11	LDO7_VOUT	LDO7 output
Н2	CHG QONB	Internal BATFET enable control input
пг		In shipping mode, CHG_QONB is pulled low for the duration of tSHIPMODE_CHG (typical 0.9s) to exit shipping mode.
		SYSUVLO rising threshold voltage setting and the UVLO_SEL pin
Н3	UVLO_SEL	defines default value
H4	VREF_TS	Power output of 1.8V reference power for temperature sensing
	_	I ² C interface serial data input/output
H5	SDA	Open-drain. An external pull-up resistor is required.
H6	SDCARD_DET_N	When SDCARD_DET_N is active, disable LDO5.
H7	BUCK2_RSGND	BUCK2 remote sense ground
H8	BUCK2_VOUT	BUCK2 output voltage sense through this pin
H9	BUCK1_VOUT	BUCK1 output voltage sense through this pin
H10	BUCK1_RSGND	BUCK1 remote sense ground
		LDO_VIN3 power input for LDO6 and LDO7
H11	LDO_VIN3	Connect a 2.2μ F ceramic capacitor between LDO_VIN3 and ground.
J1	VBATS	Battery voltage-sense
77	VDAIS	Battery voltage-sense

Pin no.	Pin name	Pin description			
J2	TS	Temperature-sense input, connected to a resistor divider for temperature programming			
J3	HW_TRAPPING	Either uses an external pull-down resistor or connects the pin to VDDA to define power configuration			
J4	USB_ID	USB ID port connected to USB receptacle			
J5	SCL	I ² C interface serial clock input Open-drain. An external pull-up resistor is required.			
J6, K6	BUCK2_PGND	BUCK2 power ground The low-side MOSFET is referenced to this pin. CIN and COUT should be returned with a minimal path to these pins.			
J7, K7	BUCK2_LX	BUCK2 switching node Connect to the inductor.			
J8, K8	BUCK2_PVIN	BUCK2 power input voltage Connect to the input power source. Connect to CIN with minimal path.			
Ј9, К9	BUCK1_PVIN	BUCK1 power input voltage Connect to the input power source. Connect to CIN with minimal path.			
J10, K10	BUCK1_LX	BUCK1 switching node Connect to the inductor.			
J11, K11	BUCK1_PGND	BUCK1 power ground The low-side MOSFET is referenced to this pin. CIN and COUT should be returned with a minimal path to these pins.			
К1	VBATS_GND	Battery voltage-sense ground			
К2	D-	USB D- port			
КЗ	D+	USB D+ port			
К4	VDDA	Regulated power input for an internal analog base Connect a 2.2µF ceramic capacitor between VDDA and ground.			
К5	VDDM	Regulated voltage output Connect a 2.2μF ceramic capacitor between VDDM and PGND. It also provides power to all VDDA-powered circuits.			

2 Electrical Characteristics

2.1 Absolute Maximum Ratings

Table 2-1. Absolute maximum ratings

(1)

Parameter	Condition	Min.	Тур.	Max.	Unit
PD_VBUS		-0.5	-	28	V
PD_CC1, PD_CC2		-0.5	-	24	V
Detter ric incut (4)	Steady state	-0.5	-	6	V
Battery pin input ⁽⁴⁾	Transient (< 10 ms)	-0.5	-	7	V
CHG_VIN, CHG_VMID, CHG_BOOT, FL_VMID		-0.5	-	22	V
USB ID, D+, D-		-0.5	-	24	V
		-0.5	-	16	V
CHG_LX	LX (peak < 100 ns duration)	-	-	-2	
Other pins		-0.5	-	6	V
Power dissipation, P _D	@TA = 25°C WL-CSP-103B 4.64x4.14 (BSC)	-	-	4.44	w
Package thermal resistance ⁽²⁾	WL-CSP-103B 4.64x4.14 (BSC), θ _{JA}	-	22.5	-	°C/W
Lead temperature	Soldering, 10 sec.	-	-	260	°C
Storage temperature range		-65	-	150	°C
ESD susceptibility ⁽³⁾	HBM (human body model)	-	-	2	kV

(1) Note 1 Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

(2) Note 2 θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}$ C with the component mounted on a high effective-thermalconductivity four-layer test board on a JEDEC 51-7 thermal measurement standard.

(3) Note 3 Devices are ESD sensitive. Handling precaution is recommended.

(4) Note 4 Battery input pin: VBAT/VBATS/VSYS/BUCKx_PVIN/BUCKx_LX/LDO_VINx/FL_VINTORCH

2.2 Recommended Operating Range

- PD_VBUS, CHG_VIN supply input voltage: 4~14V
- VBAT supply input voltage: 2.8~5V
- BUCK1/2_PVIN input voltage: 3.1~5V
- LDO_VIN1/2: 3.15~5V
- LDO_VIN3: 1.1~5V
- IBAT (discharging current with internal MOSFET): 6A (continues)
- IBAT (discharging current with internal MOSFET): 9A (peak, up to 1 sec duration)
- Junction temperature range: -40~125°C
- Ambient temperature range: -40~85°C

Note. The device is not guaranteed to function outside its operating conditions.

2.3 **Electrical Characteristics**

V_{CHG_VIN} = 5V, V_{BAT} = 4.2V, L1 = L2 = 0.33µH, L3 = 1µH, C2 = 2.2µF, C18 = 10µF, T_A = 25°C, unless otherwise specified

Parameter	Symbol	Test condition	Min.	Тур.	Max.	Unit
PMIC quiescent current	-					
Shutdown current	Ishdn	On VBAT pin, with all channels shut down, V _{BAT} = 4V	-	63	85	μA
Shipping-mode current	IBAT_SHIP	VBAT only, in shipping mode	-	16	40	μA
CHG_VIN supply current	Ichg_vin	V_{CHG_VLX} is non-switching $V_{CHG_VIN} = 5V$, $V_{BAT} = V_{CV_CHG}$ ICHG = 0 Flash LED, LDOs, bucks and RGB devices disabled, PD cable attached (Full functions are not in the communication situation.)	-	4.6	6.8	mA
CHG_VIN supply current with charger in H-Z mode	Ichg_vin_hz	V_{CHG_VLX} is in high-impedance mode $V_{CHG_VIN} = 5V$, $V_{BAT} = 4V$ Flash LED, LDOs, bucks, PD and RGB devices disabled	-	210	500	μΑ
Over-temperature protection threshold	Тотр	Thermal shutdown threshold temperature	-	150	-	°C
Over-temperature protection accuracy	Totp_acc	Thermal shutdown temperature accuracy	-15	-	15	°C
Over-temperature protection recover	Totp_recover	Thermal shutdown recover temperature	95	110	125	°C
Control I/O pin, VDDA a	nd VSYS					
Logic-low threshold voltage for all open- drain outputs	Vol	I _{DS} = 10 mA	-	-	0.4	v
Logic-high threshold voltage for all inputs	VIH	Logic-high threshold	1.2	-	-	V
Logic-low threshold voltage for all inputs	VIL	Logic-low threshold	-	-	0.4	V
SYS under-voltage protection rising threshold range	Vsys_uvlo_rise	External R selection R = 1 M Ω (2.9V), 100 mV/step	2.8	-	3.3	V
SYS under-voltage protection rising threshold accuracy	$V_{SYS_UVLO_ACC_RISE}$	V _{SYS} rising, default 2.9V	-50	-	+50	mV
De-bouncing time by SYS UVLO rising	tdeboun_sys_uvlo_rise		-	15	-	ms
SYS under-voltage protection falling threshold range	Vsys_uvlo_fall	l ² C programmable, default 2.5V, 50 mV/step	2.4	-	2.8	V
SYS under-voltage protection falling threshold accuracy	Vsys_uvlo_acc_fall	V _{SYS} falling, default 2.5V	-50	-	+50	mV
VDDA over-voltage protection threshold	Vvdda_ovp	V _{DDA} rising	5.25	5.5	5.75	v

Table 2-2. Electrical specifications

Parameter	Symbol	Test condition	Min.	Тур.	Max.	Unit
VDDA over-voltage	Vvdda_ovp_hys	V _{DDA} falling	-	0.2	-	V
protection hysteresis	VDDA_OVP_HTS	VDDA runnig		0.2		v
Pull-down ability on MRSTB	Ipd_mrstb		-	1	2.3	μA
Pull-down ability on SDCARD_DET_N	Ipd_sdcard_det_n		-	1	2.3	μΑ
Pull-down resistance on SRCLKEN_0	R _{SRCLKEN_0}		-	1	2.3	μA
Pull-down resistance on EN	R _{EN}		-	350	-	kΩ
USB ID						
		V _{USB_ID} = 0.6V, 0x6F[7] = 1	0.57	0.6	0.63	V
USB_ID pull-up voltage	VUSB_ID_PULLUP	$V_{USB_{ID}} = 1.8V, 0x6F[7] = 0$	1.71	1.8	1.89	V
USB_ID pull-up resistance tolerance	Rusb_id_pullup	500 kΩ, 75 kΩ, 5 kΩ, 1 kΩ	-20	_	20	%
USB_ID pull-down resistance	Rusb_id_pullup	500 kΩ, 75 kΩ, 5 kΩ, 1 kΩ	3.75	5	6.25	kΩ
Interrupt threshold		0x6F[6] = 0, 0x6F[7] = 0	1.3	1.45	1.6	
voltage	VID_INT	0x6F[6] = 1, 0x6F[7] = 1	0.18	0.2	0.22	V
Interrupt threshold		0x6F[7] = 1	-	0.05	-	
voltage hysteresis	Vid_int_hys	0x6F[7] = 0	-	0.1	-	V
Interrupt debounce time tolerance	tid_int_deb	I ² C programmable,5 μs ~ 64 ms (default 50 μs)	-10	-	10	%
Input equivalent capacitance	CID_IN_CAP		-	-	20	pF
Charger						
Sleep-mode entry threshold	Vsleep_enter_chg	V _{CHG_VIN} falling, V _{CHG_VIN} - V _{BAT}	0	0.04	0.1	V
Sleep-mode exit threshold	Vsleep_exit_chg	V _{CHG_VIN} rising, V _{CHG_VIN} - V _{BAT}	0.04	0.1	0.2	v
Sleep-mode exit deglitch time	td_sleep_exit_chg	Exit sleep-mode	-	120	-	ms
CHG_VIN bad adapter threshold	VBAD_ADP_CHG	V _{CHG_VIN} falling	-	3.8	-	V
CHG_VIN bad adapter hysteresis	VBAD_ADP_HYS_CHG	V _{CHG_VIN} rising	-	150	-	mV
CHG_VIN bad adapter sink current	Ibad_adp_sink_chg		-	50	-	mA
CHG_VIN bad adapter detection time	tbad_adp_det_chg		-	30	-	ms
Input current limit factor	K _{ILIM_CHG}	Input current regulation 508 mA by CHG_ILIM pin with resistance = 698Ω	320	355	390	AΩ
CHG_VIN minimum input voltage regulation (MIVR) threshold	Vmivr_chg	I ² C programmable range in 0.1V steps	3.9	-	13.4	V
CHG_VIN minimum input voltage regulation accuracy	Vmivr_acc_chg	V _{MIVR} = 4.4V or 9V	-2	-	2	%
AICR 100 mA mode	IAICR_100mA_CHG	I _{AICR} = 100 mA, V _{CHG_VIN} = 5V, V _{BAT} = 3.8V	86	93	100	mA

Parameter	Symbol	Test condition	Min.	Тур.	Max.	Unit
AICR 500 mA mode	IAICR_500mA_CHG	I _{AICR} = 500 mA, V _{CHG_VIN} = 5V, V _{BAT} = 3.8V	440	470	500	mA
AICR 1,000 mA mode	IAICR_1000mA_CHG	I _{AICR} = 1,000 mA, V _{CHG_VIN} = 5V, V _{BAT} = 3.8V	880	940	1,000	mA
AICR 1,500 mA mode	IAICR_1500mA_CHG	I _{AICR} = 1,500 mA, V _{CHG_VIN} = 5V, V _{BAT} = 3.8V	1,300	1,400	1,500	mA
CHG_VIN UVLO	VUVLO_CHG	V _{CHG_VIN} rising	3.05	3.3	3.55	V
CHG_VIN UVLO hysteresis	Vuvlo_hys_chg	V _{CHG_VIN} falling	-	150	-	mV
CHG_VIN over-voltage protection threshold	VCHG_VIN_OVP_CHG1	V _{CHG_VIN} rising, I ² C programmable 5.5V	5.17	5.5	5.86	V
CHG_VIN over-voltage protection threshold	VCHG_VIN_OVP_CHG2	V _{CHG_VIN} rising, I ² C programmable 6.5V (default)	6.11	6.5	6.92	V
CHG_VIN over-voltage protection threshold	Vchg_vin_ovp_chg3	V _{CHG_VIN} rising, I ² C programmable 11V	10.34	11	11.71	V
CHG_VIN over-voltage protection threshold	Vchg_vin_ovp_chg4	V _{CHG_VIN} rising, I ² C programmable 14.5V	13.63	14.5	15.44	V
CHG_VIN over-voltage protection propagation delay	tchg_vin_ovp_ch	V _{CHG_VIN} rising above V _{CHG_VIN} over- voltage protection threshold turn off UUG MOS, OVP setting = 6.5V	-	100	-	ns
CHG_VIN over-voltage protection hysteresis	Vchg_vin_ovp_hys_chg	$V_{CHG_{VIN}}$ falling	-	250	-	mV
VBAT over-voltage protection threshold	VBAT_OVP_CHG	V _{BAT} rising, as percentage of V _{OREG_CHG} , as V _{BAT} /V _{OREG_CHG} , 0x12[4] TE = 0	106	108	110	%
VBAT over-voltage protection hysteresis	Vbat_ovp_hys_chg	V _{BAT} falling, as (V _{BAT} - Voreg_chg)/Voreg_chg 0x12[4] TE = 0	-	2	-	%
Thermal regulation threshold	T _{THREG_CHG}	Charge current starts decreasing (default)	-	120	-	°C
VSYS over-voltage protection threshold	Vsys_ovp_chg	V _{SYS} rising	4.9	5.25	5.5	V
VSYS under-voltage protection threshold	Vsys_uvp_chg	Vsys falling	2.2	2.4	2.6	V
VBAT depletion threshold voltage	VBAT_DPL_RISE	V _{BAT_DPL} rising	2.3	2.5	2.8	V
VBAT depletion threshold voltage	VBAT_DPL_FALL	VBAT_DPL falling	2	2.3	2.39	V
CHG_VIN force sleep mode supply current	ICHG_VIN_SLEEP	Reg: 0x11[3] = 1	-	-	2.5	mA
End of charge						
Battery regulation voltage range	Voreg_chg	I ² C programmable in 10 mV steps	3.9	-	4.71	V
Battery regulation voltage accuracy	Voreg_acc_chg	$V_{OREG_{CHG}} = 4.2V, 4.35V, 4.36V, 4.37V, 4.38V, 4.43V or V_{OREG_{CHG}} = 4.45V (T_c = -10^{\circ} 70^{\circ}C)^{(3)}$	-0.5	-	0.5	%
Re-charge mode threshold	Vrech_chg	I ² C programmable, V _{BAT} falling, difference below V _{OREG_CHG}	50	100	150	mV
Re-charge deglitch time	td_rech_chg	V _{BAT} falling	-	120	-	ms
End-of-charge current	Іеос_снд	I ² C programmable in 50 mA steps	100	-	850	mA

Parameter	Symbol	Test condition	Min.	Тур.	Max.	Unit
Default end-of-charge current	I _{EOC_DEF_CHG}	Default	-	250	-	mA
End-of-charge current accuracy	I _{EOC_ACC}	I _{EOC_CHG} = 150 mA, 200 mA, 250 mA	-20	-	20	%
End-of-charge deglitch time	td_еос_снд		-	2	-	ms
Charge current	I _{CHG}	I ² C programmable in 0.1A steps, 0x17 bit[7:2]	0.3	-	3	А
ICHG current Accuracy 1	Існд_асс1_снд	$V_{BAT} = 3.8V, 300 \text{ mA} \le I_{CHG} < 500 \text{ mA}, (T_c = -10^{-70} \text{°C})$	-20	_	20	%
ICHG current Accuracy 2	Існд_асс2_снд	$V_{BAT} = 3.8V, 500 \text{ mA} \le I_{CHG} < 1,000 \text{ mA}, (T_c = -10^{-70} \text{°C})$	-10	_	10	%
ICHG current Accuracy 3	Існд_ассз_снд	$V_{BAT} = 3.8V, I_{CHG} \ge 1,000 \text{ mA}$ (T _c = -10~70°C)	-5	-	5	%
Pre-charge mode threshold	Vprechg_chg	I ² C programmable in 0.1V steps, V _{BAT} rising	2.0	-	3.5	V
Pre-charge mode hysteresis	Vprechg_hys_chg	Pre-charge hysteresis V _{BAT} falling	-	0.2	-	V
Pre-charge threshold accuracy	Vprechg_acc_chg		-5	-	5	%
Pre-charge current	Iprechg_chg	I ² C programmable (default)	-	150	-	mA
Pre-charge current accuracy	Iprechg_acc_chg		-20	-	20	%
Trickle charge threshold	VTRICHG	V _{BAT} falling	-	2	-	V
Trickle charge threshold hysteresis	VTRICHG_HYS	V _{BAT} rising	-	200	-	mV
Trickle charge threshold accuracy	VTRICHG_ACC		-5	-	5	%
Trickle current	Itrichg		-	100	-	mA
Trickle current accuracy	Itrichg_acc		-20	-	20	%
VSYS regulation voltage	Vsys_min_chg	I ² C programmable in 0.1V steps	3.3	-	4	V
VSYS regulation voltage accuracy	Vsys_min_acc_chg		-3	-	3	%
UUG on-resistance	Ron_uug_chg	From CHG_VIN to CHG_VMID	-	10	30	mΩ
UG on-resistance	Ron_ug_chg	From CHG_VMID to CHG_VLX	-	20	40	mΩ
LG on-resistance	Ron lg chg	From CHG_VLX to PGND	-	20	40	mΩ
PPMOS on-resistance	RON_PPMOS_CHG	From VSYS to VBAT	-	12	30	mΩ
Switching frequency	f _{osco_снg}	I ² C programmable to 1.5 MHz (default)	-	1.5	-	MHz
Switching frequency accuracy	fosc_acc_chg		-10	-	10	%
Maximum duty cycle	Dмах_снд		-	97	-	%
Minimum duty cycle	Dміл_сна		0	-	-	%
VDDP regulation	Vvddp_chg	V _{CHG_VIN} = 5.5V	4.5	4.9	5.3	V
Charger buck OCP		REG0x1D[2] = 1'b0	4	6	8	
current	ICHG_BUCK_OCP_CHG	REG0x1D[2] = 1 'b1	5.6	8	10.4	A
Internal QONB pull-up resistance	R _{QONB_CHG}		16.15	19	21.85	kΩ

Parameter	Symbol	Test condition	Min.	Тур.	Max.	Unit
QONB exit shipping mode duration	tshipmode_chg	CHG_QONB low for BATFET on- time to exit shipping mode	0.86	0.96	1.06	s
QONB system reset duration	t _{qonb_rst_chg}	CHG_QONB low time to enable full system reset	12	15	18	S
BATFET reset time	tbatfet_rst_chg	BATFET off-time during full system reset	0.6	0.66	0.72	S
Shipping mode entry deglitch time	td_ship_enter	Enter shipping mode delay	15	18	21.6	S
AICC threshold	VAICC_VTH	V _{CHG_VIN} rising I ² C programmable	-	4.6	-	V
AICC hysteresis	VAICC_HYS_VTH		-	50	-	mV
OTG output regulation	VBSTCV_CHG	I ² C programmable default	-	5.05	-	V
OTG output accuracy	VBSTCV_ACC_CHG	I _{LOAD} = 0 mA	-3	-	3	%
OTG over-load protection threshold	I _{BST_0.5A_CHG}	OTG_OC = 0.5A REG 0x1A[2:0] = 000	0.5	-	-	А
OTG CHG_VMID over- voltage protection threshold	VMIDOVP_OTG_CHG	VCHG_VMID rising	5.72	6	6.28	V
OTG CHG_VMID over- voltage protection hysteresis	VMIDOVP_OTG_HYS_CHG		-	200	-	mV
OTG VBAT under- voltage protection threshold	VBAT_UVP_OTG_CHG	I^2C default, V_{BAT} falling	2.62	2.8	2.98	V
OTG VBAT under- voltage protection hysteresis	VBAT_UVP_OTG_HYS_CHG	V _{BAT} rising	-	400	-	mV
Boost supply current	BOOST_SUPPLY	OTG mode, ILOAD = 0 mA	-	8	-	mA
OTG over-current protection threshold	Іотд_оср_снд	Default = 6.5A	5.2	6.5	8.2	А
Pull-down ability on CHG_ENB	IPD_CHG_ENB		-	1	2.3	μΑ
D+/D- detection		· · · · · · · · · · · · · · · · · · ·				
D+ source voltage	Vdp_src		0.5	0.6	0.7	V
Data detect voltage	V _{DAT_REF}		0.25	0.3	0.4	V
VLGC voltage	VLGC_CHG		0.8	-	2	V
D- sink current	Idm_sink		50	100	150	μΑ
Data contract detect current source	Idp_src		7	-	13	μΑ
Dedicated charging port resistance across D+/-	R _{D+D-DCP}	sEN_DCP = 1	50	90	130	Ω
D+ source on-time	t _{DP_SRC_ON}		40	64	-	ms
DCD timeout	t _{DCD_TIMEOUT}		300	-	1,200	ms
D+ source off to high current	tdpsrc_hicrnt		28	32	36	ms
Charger detect debounce	tchgr_det_dbnc		27	30	33	ms
CHRDETB						

Parameter	Symbol	Test condition	Min.	Тур.	Max.	Unit
PD_VBUS over-voltage						
protection threshold	VPD_VBUS_OVP	V _{PD_VUS_OVP} rising, I ² C	6	-	14.5	V
range		programmable (default 10.5V)	-		_	
PD_VBUS over-voltage						
protection accuracy	VPD_VBUS_OVP_ACC		-3	-	3	%
PD_VBUS over-voltage						
protection hysteresis	VPD_VBUS_HYS		-	150	-	mV
PD_VBUS_UVLO		VPD_VUS_UVLO falling, I ² C				
protection threshold	VPD_VBUS_UVLO	programmable 0.1V/Step (default	2.6	-	3.7	V
•	V PD_VBUS_UVLO	3.7V)	2.0	_	5.7	v
range		3.7 V)				
PD_VBUS UVLO	VPD_VBUS_UVLO_ACC		-4	-	4	%
protection accuracy						
PD_VBUS UVLO	VPD_VBUS_UVLO_HYS_		-	150	-	mV
protection hysteresis						
ADC	T					
		Only for one channel, 0x56[5:3] = 0				
ADC conversion time	tconv_adc	ms of waiting time and 0x58[7:0] =	20.8	26	31.2	ms
		0 ms of idle time				
Number of bits for ADC	D			12	_	bit
resolution	Res_adc		-	12	-	DIL
CHG_VIN_DIV5			4		22	.,
measurement range	Vvbus_div5_adc_range		1	-	22	V
CHG_VIN_DIV5						
resolution	Vvbus_div5adc_res		-	25	-	mV
CHG_VIN_DIV5						
accuracy	Vvbus_div5adc_acc		-3	-	3	LSB
CHG_VIN_DIV2						
measurement range	$V_{VBUS_DIV2_ADC_RANGE}$		1	-	VDDA*2	V
CHG_VIN_DIV2						
resolution	Vvbus_div2adc_res		-	10	-	mV
CHG_VIN_DIV2	VVBUS_DIV2ADC_ACC		-3	-	3	LSB
accuracy						
VBAT measurement	VBAT_ADC_RANGE		0	-	VDDA	V
range			-			
VBAT resolution	VBAT_ADC_RES		-	5	-	mV
VBAT accuracy	V _{BAT_ADC_ACC}		-3	-	3	LSB
VSYS measurement	M		0			V
range	Vsys_adc_range		0	-	VDDA	V
VSYS resolution	V _{SYS_ADC_RES}		-	5	-	mV
VSYS accuracy	Vsys_adc_acc		-3	-	3	LSB
IBUS measurement			-		-	
range	IBUS_ADC_RANGE		0	-	5	А
IBUS resolution	libus adc res	+ +	_	50	_	mA
	IBUS_ADC_KES		-	50		11A
		$I_{BUS} > 2A$, IAICR [7:2] setting ≥ 400 mA	-3	-	3	
IBUS accuracy	libus adc acc	$I_{BUS} < 2A$, IAICR [7:2] setting ≥ 400	-2	-	2	LSB
1		mA		<u> </u>		
		I _{BUS} < 2A, IAICR [7:2] setting < 400 mA	-2	-	2	
	1				1	
IBAT measurement					5	

Parameter	Symbol	Test condition	Min.	Тур.	Max.	Unit
IBAT resolution	libat_adc_res		-	50	-	mA
IBAT accuracy	IIBAT_ADC_ACC		-2	-	2	LSB
TEMP_JC measurement range	Ttemp_jc_adc_range		-40	-	120	°C
TEMP_JC resolution	TTEMP JC ADC RES		-	2	-	°C
TEMP_JC accuracy	T _{TEMP_JC_ADC_ACC}	Temperature < 85°C	-3	-	3	LSB
VREF_TS pull-up voltage	V _{REF_TS_ADC}		1.782	1.8	1.818	V
TS voltage measurement range	VTS_ADC_RANGE		0	-	VDDA	V
TS resolution	VTS_ADC_RES		-	5	-	mV
TS accuracy	TTS_ADC_ACC		-2	-	2	LSB
USB_ID measurement range	Vusbid_adc_range	VDDA > 3.4V	0	-	VDDA - 1.4	V
USB_ID resolution	VUSB_ID_ADC_RES		-	5	-	mV
Pump express						
PE+1 on time (A)	ton_a_pe	V _{BAT} = 3.8V. Use PE+ adapter	430	500	570	ms
PE+1 on time (B)	ton_b_pe	V _{BAT} = 3.8V. Use PE+ adapter	240	300	360	ms
PE+1 on time (C)	ton_c_pe	V _{BAT} = 3.8V. Use PE+ adapter	70	100	130	ms
PE+1 off time (D)	toff d pe	V _{BAT} = 3.8V. Use PE+ adapter	70	100	130	ms
PE+1 off time (I)	toff_1_pe	V _{BAT} = 3.8V. Use PE+ adapter	80	-	225	ms
PE+2 off time (D)	toff_d_pe	V _{BAT} = 3.8V. Use PE+ adapter	87	105	128	ms
PE+2 on time (E)	ton_e_pe	V _{BAT} = 3.8V. Use PE+ adapter	147	190	248	ms
PE+2 on time (F)	t _{on_f_pe}	V _{BAT} = 3.8V. Use PE+ adapter	87	102.5	118	ms
PE+2 on time (G)	ton_g_pe	V _{BAT} = 3.8V. Use PE+ adapter	22	50	68	ms
PE+2 off time (H)	toff_H_PE	V _{BAT} = 3.8V. Use PE+ adapter	22	50	68	ms
PE+2 off time (I)	toff_i_pe	V _{BAT} = 3.8V. Use PE+ adapter	135	155	175	ms
Flash LED current source				100		
LED current accuracy	ILED_ACC_FL	Flash LED current can be set from 25 mA to 400 mA	-8	-	8	%
LED current accuracy	ILED_ACC_FL	Flash LED current can be set from 0.4A to 1.5A	-6	-	6	%
FL_LEDCSx leakage current	I _{leak_fl}	VLEDVIN = 5V, LEDCSX = 0, LEDCSX is disabled	-	0.1	4	μΑ
FL_LEDCSx start-up current	Istart_fl	LEDCSX = 0, LEDCSX is enabled	-	320	1,000	μΑ
LEDCSX short threshold	V _{SC_FL}		-	1	1.3	V
LEDCSX short event timer	t _{D_SC_FL}		1.8	2.5	3.3	ms
Flash timeout	ttimeout_fl	FLEDx_STRB_TO = 0100101	-	1,248	-	ms
Flash timer accuracy	tmr_acc_fl	Timer is set by register.	-10	-	10	%
Current source regulation voltage	V _{REG_FL}	I _{LED} = 200 mA, 0x7C[1:0] = 00	-	200	300	mV
Current source regulation voltage	Vreg_fl	I _{LED} = 1,500 mA, 0x7C[1:0] = 01	-	-	500	mV
Strobe/TXMask deglitch time	td_strb_fl		-	10	-	μs
Flash ready time	t _{flsh_rdy_fl}	EN_LEDCS = 1 to current reach 800 mA target value	-	4.5	5	ms

Parameter	Symbol	Test condition	Min.	Тур.	Max.	Unit
Strobe FL-CHG_VIN OVP	V _{IN_OVP_FL}		5.45	5.6	5.75	v
Strobe FL-CHG_VIN OVP hysteresis	VIN_OVP_Hys_FL		0.23	0.3	0.37	v
High-side switch on- resistance	Ron_h_fl		-	60	-	mΩ
Low-side switch on- resistance	R _{on_l_fl}		-	36	-	mΩ
Pull-down resistance on FL_STROBE	R _{L_FL_STROBE}		-	350	-	kΩ
Pull-down resistance on BL_EN	Rl_fl_torch		-	350	-	kΩ
Pull-down resistance on FL_TXMASK	Rl_fl_txmask		-	350	-	kΩ
USB_PD			-			-
Bit rate	f _{BitRate_PD}		270	300	330	Kbps
Maximum difference between the bit rate during the part of the packet following the preamble and the reference bit-rate	p BitRate_PD		-	-	0.25	%
Time from the end of last bit of a frame until the start of the first bit of the next preamble	tInterFrameGap_PD		25	-	-	μs
Time before the start of the first bit of the preamble when the transmitter should start driving the line	tStartDrive_PD		-1	-	1	μs
Time to cease driving the line after the end of the last bit of the frame	t _{EndDriveBMC_PD}		-	-	23	μs
Falling time	t _{Fall_PD}		300	-	-	ns
Time to cease driving the line after the final high-to-low transition	tholdLowBMC_PD		1	-	-	μs
Rising time	t _{Rise_PD}		300	-	-	ns
Voltage swing	Vswing_PD		1.05	1.125	1.2	V
Transmitter output impedance	ZDriver_PD		33	-	75	Ω
Time window for detecting non-idle	t _{TransitionWindow_PD}		12	-	20	μs
Receiver input impedance	ZBmcRx_PD		1	-	-	MΩ
Low-power mode	ILOW-POWER_PD	DRP toggle	-	32	45	μΑ
VCONN switch on- resistance	Ron_vconn_pd		-	0.7	1	Ω
OCP range	I _{OCP_PD}		200	-	600	mA
DFP 80µA CC current	ICC_DFP80µ_PD		64	80	96	μΑ

Parameter	Symbol	Test condition	Min.	Тур.	Max.	Unit
DFP 180µA CC current	ICC_DFP180µ_PD		166	180	194	μA
DFP 330µA CC current			304	330	356	
•	ICC_DFP330µ_PD		504	550	550	μA
UFP pull-down resistance through CC	Pd		4.59	5.1	5.61	kΩ
pin	Rd_pd		4.59	5.1	5.01	K12
UFP pull-down						
threshold voltage in	VTH_DBL_PD	Under I _{CHG} = I _{CC_DFP80µ_PD} and	0.2	-	1.6	V
dead battery		ICC_DFP180µ_PD	0.2		1.0	•
UFP pull-down						
threshold voltage in	VTH_DBH_PD	Under ICHG = ICC_DFP330µ_PD	0.8	-	2.45	V
dead battery						
Valid VBUS detection						
threshold	V _{VALID_VBUS_PD}		3.5	-	4.0	V
CC pin lower pull-up		REG 0xAB bit = 0 in low-power				
voltage	VLPWR_PULLUP_CC	mode	1.8	2	2.2	V
RGB/Moonlight LED driv	ver					
Current accuracy	LED ACC RGB	I _{LED} = 20 mA	-5	-	5	%
Current matching	ILED_MATCH_RGB	$I_{\text{LED}} = 20 \text{ mA}$	-5	-	5	%
Dropout voltage	VDROP_RGB	$I_{\text{LED}} = 20 \text{ mA}$	-	75	150	mV
RGB_ISINK1/2/3 output	_			75	150	111 V
current range	ILED_ISINK		1	-	24	mA
Moonlight output						
current range	I _{LED_ML}	5 mA/step	5	-	150	mA
Moonlight current						
accuracy	ILED_ACC_ML	I _{LED} = 60 mA (default)	-5	-	5	%
Moonlight dropout						
voltage	Vml_drop_rgb	I _{LED} = 150 mA	-	-	200	mV
		All 3 channels set to 20 mA	-	203	-	μA
RGB supply current	LED ISINK SUPPLY	2 channels set to 20 mA	_	162	_	μΑ
neb supply current		1 channels set to 20 mA	_	122	-	μΑ
Moonlight supply				122		μΛ
current	ILED_ML_SUPPLY	Moonlight set to 100 mA	-	176	-	μΑ
RGB timing accuracy	T _{ACC_RGB}		-5	-	5	%
BUCK1	TACC_NOD		3		3	70
Turn-on overshoot		VOUT = default, no load	_	_	10	%
Over-current protection		Peak inductor current, as	-	-	10	70
(OCP)	IOCP1	REG_PMIC, 0x15[2:1] = 01	4	5	6	А
		VBAT = 4V, Vout = 0.8V, I LOAD =				
		$100 \text{ mA}, \text{L}_\text{DCR}_\text{max} = 26 \text{ m}\Omega$	-	84	-	
		VBAT = 4V, Vout = 0.8V, 1 LOAD =				
		$500 \text{ mA}, \text{L}_\text{DCR}_\text{max} = 26 \text{ m}\Omega$	-	84.8	-	
Efficiency	Eff_BUCK	VBAT = 4V, VOUT = 0.8V, I LOAD =				%
		$1000 \text{ mA}, \text{ L}_\text{DCR}_\text{max} = 26 \text{ m}\Omega$	-	84.1	-	
		VBAT = 4V, VOUT = 0.8V, I LOAD =				
		$2000 \text{ mA}, \text{ L}_\text{D}\text{CR}_\text{max} = 26 \text{m}\Omega$	-	76.5	-	
BUCK soft-start time	tss_виск	VOUT = 0.55V, I ² C programmable	110	-	1,000	μs
Switch frequency	fosc_виск	In FPWM	2.1	- 2.4	2.7	μs MHz
Output voltage ripple	IUSC_BUCK			2.4		IVIT1Z
(PWM)		VBAT = 3.1V, I_LOAD = 0.5 x Imax 20 MHz measurement BW	-5.65% *Vo+11	-	+8%* Vo- 11	mV
Output voltage ripple		VBAT = 3.1V, I LOAD = 0.5 x Imax				
(PFM)		20MHz measurement BW	-5.65% *Vo+11	-	+8%* Vo- 11	mV
(FFIVI)			11404		11	

Parameter	Symbol	Test condition	Min.	Тур.	Max.	Unit
Load transient		VBAT = 3.1V, I_LOAD = 0.1 to 2.06A, tr/tf = 1 μs	-53	-	53	mV
Line transient		VIN = 5 to 4.3V/3.5V to 2.8V, Vout = 0.8V, I_LOAD = 2A	-40	-	40	mV
DC accuracy (includes line/load regulation@PWM)		VBAT = 3.1 to 5.0V I_LOAD = PWM load	-6	-	6	mV
DC accuracy (includes line/load regulation@PFM)		VBAT = 3.1 to 5.0V I_LOAD = PFM load	-10	-	22.5	mV
Output discharge switch on-resistance			-	11	-	Ω
BUCK1 supply current	IBUCK1_PVIN	$V_{BUCK1_PVIN} = 4V$, $I_{LOAD} = 0$ mA, BUCK1_VOUT = 0.55V	-	4	6	μA
BUCK2						-
Turn-on overshoot		VOUT = default, no load	-	-	10	%
Over-current protection (OCP)	Іоср2	Peak inductor current, as REG_PMIC, 0x25[2:1] = 01	4	5	6	А
Efficiency		VBAT = 4V, Vout = 1.125V, I_LOAD = 100 mA, L_DCR_max = 26 mΩ	-	85	-	
	F	VBAT = 4V, Vout = 1.125V, I_LOAD = 500 mA, L_DCR_max = 26 mΩ	-	83	-	%
	Eff_buck	VBAT = 4V, Vout = 1.125V, I_LOAD = 1,000 mA, L_DCR_max = 26 mΩ	-	78	-	
		VBAT = 4V, Vout = 1.125V, I_LOAD = 2,000 mA, L_DCR_max = 26 mΩ	-	69	-	
BUCK soft-start time	tss_виск	Vout = 1.125V I ² C programmable	-	-	1,000	μs
Switch frequency	f _{osc_виск}	In FPWM	2.1	2.4	2.7	MHz
Output voltage ripple (PWM)		VBAT = 3.1V, Vout = 1.125V I_LOAD = 0 mA ~ Imax 20 MHz measurement BW	-	1	-	%
Output voltage ripple (PFM)		VBAT = 3.1V, Vout = 1.125V I_LOAD = 0 mA ~ Imax 20 MHz measurement BW	-	40	-	mVpp
Load transient		VBAT = 3.1V, Vout = 1.125V I_LOAD = 0.1~0.9A, tr/tf = 1 µs	-40	_	40	mV
Line transient		VIN = 5 ~ 4.3V/3.5V ~ 2.8V, Vout = 1.125V, I_LOAD = 2A	-40	-	40	mV
DC accuracy (includes line/load regulation@PWM)		VBAT = 3.1~5.0V I_LOAD = PWM load	-0.9	-	0.9	%
DC accuracy (includes line/load regulation@PFM)		VBAT = 3.1~5.0V I_LOAD = PFM load	-0.9	-	3	%
Output discharge switch on-resistance			-	11	-	Ω
BUCK2 supply current	IBUCK2_PVIN	V _{BUCK2} = 4V, I _{LOAD} = 0 mA, BUCK2 VOUT = 1.125V	-	4	6	μA

Parameter	Symbol	Test condition	Min.	Тур.	Max.	Unit
	VLDO_VIN1		max{Vo+ 0.35; 3.15}	-	5	
Input voltage range	VLDO_VIN2		max{Vo+ 0.35 ; 3.15}	-	5	v
	VLDO_VIN3	LDO7 = 1.8V/10 mA	2	-	5	
	V _{LDO_VIN3}	LDO6 = 0.75V/300 mA LDO7= 0.6V/600 mA	1.08	-	2	
	ΔVout_ldo1	V _{OUT} = 1.8V (default) I _{OUT} = 150 mA	-1	-	1	
	ΔV _{OUT_LDO2}	V _{OUT} = 1.8V (default) I _{OUT} = 200 mA	-1	-	1	
Output voltage	ΔV _{OUT_LDO3}	V _{OUT} = 3V (default) I _{OUT} = 200 mA	-1	-	1	
accuracy	ΔV _{OUT_LDO5}	V _{OUT} = 2.95V (default) I _{OUT} = 800 mA	-1	-	1	%
	ΔV _{OUT_LDO6}	Vout = 0.75V (default) Iout = 300 mA	-1	-	1	
	ΔV _{OUT_LDO7}	V _{OUT} = 0.6V (default) I _{OUT} = 600 mA	-1	-	1	
	I _{oc_LDO1}		225	-	420	
	I _{oc_LDO2}		300	-	560	
Output current limit	I _{oc_LDO3}		300	-	500	mA
Output current mint	I _{oc_LDO5}		1,200	-	2,000	ША
	loc_LDO6		450	-	840	
	loc_LDO7		900	-	1,680	
	I _{SHORTLIM_LDO1}	OCFB_EN = 1	30	-	150	
	Ishortlim_ldo2	OCFB_EN = 1	40	-	200	
Output short current	Ishortlim_ldo3	OCFB_EN = 1	40	-	200	mA
limit	Ishortlim_ldo5	OCFB_EN = 1	160	-	800	ША
	Ishortlim_ldo6	OCFB_EN = 1	60	-	300	
	Ishortlim_ld07	OCFB_EN = 1	120	-	600	
Dropout voltage	Vdrop_ldo1/2/3/5	I_LOAD1 = 150 mA, I_LOAD2 = 200 mA, I_LOAD3 = 200 mA, I_LOAD5 = 800 mA	-	-	350	mV
	Vdrop_ldo6/7	I_LOAD6 = 300 mA, I_LOAD7 = 600 mA	-	-	100	
	I_ld01	I_rated \leq 150 mA	-	-	150	
	I_LDO2	I_rated ≤ 200 mA	-	-	200	
Rated load current	I_LDO3	I_rated ≤ 200 mA	-	-	200	m ^
(I_rated)	I_LDO5	I_rated ≤ 800 mA	-	-	800	mA
	I_ldo6	I_rated ≤ 300 mA	-	-	300	
	I_LDO7	$I_{rated} \le 600 \text{ mA}$	-	-	600	
			-	45	-	
Power supply rejection ratio (PSRR)	PSRR _{LDO1/2/3/5}	 I load ≤ I_rated Freq = 1~10 kHz 	-	30	-	dB
		 I load ≤ I_rated Freq = 10~100 kHz 	-	15	-	

Parameter	Symbol	Test condition	Min.	Тур.	Max.	Unit
		1. I load ≤ I_rated 2. Freq = 100 kHz ~ 1 MHz	-	15	-	
		1. I load ≤ I rated				
		2. Freq = 50 Hz ~ 1 kHz	-	75	-	
		1. $ load \leq $ rated				-
		2. Freq = 1~10 kHz	-	55	-	
	PSRRLDO6/7	1. I load ≤ I_rated		40		
		2. Freq = 10~100 kHz	-	40	-	
		 I load ≤ I_rated Freq = 100 kHz ~ 1 MHz 	-	25	-	
	tss_ldo1/2	Vout_LDO = 90% of Vout_LDO (target)	-	-	1,000	
Soft-start time	tss_ldo3/5	Vout_LDO = 90% of Vout_LDO (target)	-	-	1,000	
Solt-start time	tss_ldo6	Vout_LDO = 90% of Vout_LDO (target)	-	-	2,000	μs
	tss_ldo7	Vout_LDO = 90% of Vout_LDO (target)	-	-	3,300	
Power off-time	t _{off_LDO1/2/3/7}	Vout_LDO = 10% of Vout_LDO (target)	-	-	2,000	
	t _{off_LDO5}	Vout_LDO = 10% of Vout_LDO (target)	-	-	1,500	μs
	t _{off_LDO6}	Vout_LDO = 10% of Vout_LDO (target)	-	-	1,000	
Normal mode quiescent current	I _{IQ_NM_LD01/2/3/5}	I _{LOAD} = 0 mA, LDO1/2/3 is from LDO_VIN1, LDO5 is from LDO_VIN2, not include base Iq.	-	-	32	
	liq_nm_ldog	I _{LOAD} = 0 mA, LDO6 is from LDO_VIN2 and LDO_VIN3, not include base Iq.	-	-	169	μA
	IIQ_NM_LD07	I _{LOAD} = 0 mA, LDO7 is from LDO_VIN2 and LDO_VIN3, not include base Iq.	-	-	143	
	liq_lp_ld01/2/3/5	I _{LOAD} = 0 mA, LDO1/2/3 is from LDO_VIN1, LDO5 is from LDO_VIN2, not include base Iq.	-	-	16	
Low power mode quiescent current	I _{IQ_LP_LDO6}	I _{LOAD} = 0 mA, LDO6 is from LDO_VIN2 and LDO_VIN3, not include base Iq.	-	-	20	μΑ
	I _{IQ_LP_LD07}	I _{LOAD} = 0 mA, LDO7 is from LDO_VIN2 and LDO_VIN3, not include base Iq.	-	-	17.6	
I ² C characteristics	1					
LOW-level input voltage	VIL_I ² C		-	-	0.4	V
HIGH-level input voltage	V _{IH_I} ² c		1.2	-	-	v
LOW-level output voltage	V _{OL_I} ² _C	Open-drain	-	-	0.4	V
Input current each I/O pin	lin_i²c	$0.1 \times V_{\text{DD}} < V_{\text{I}} < 0.9 \times V_{\text{DD(MAX)}}$	-10	-	10	μΑ
•	c 2	CB ≤ 100 pF	-	-	3.4	
SCL clock frequency	fscl_i ² c_нsм	100 pF ≤ CB ≤ 400 pF	-	-	1.7	MHz
Data hold time	t _{DH_I} ² c		30	-	-	ns
Data set-up time	t _{DS_1} ² c		70	-	-	ns

- (1) Note 1 A 10 k Ω NTC thermistor with β = 3,435K is suggested, and a SEMITEC 103KT1608T is in use.
- (2) Note 2 Quiescent, or ground current, is the difference between input and output currents. It is defined by $I_Q = I_{IN} I_{OUT}$ under no load condition (I_{OUT} = 0 mA). The total current drawn from the supply is the sum of the load current plus the ground pin current.
- (3) Note 3 Guaranteed by design.

3 Typical Operating Characteristics

3.1 Typical Operating Characteristics

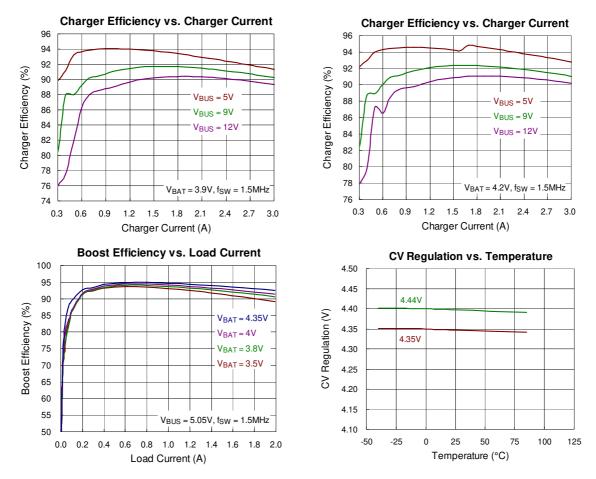
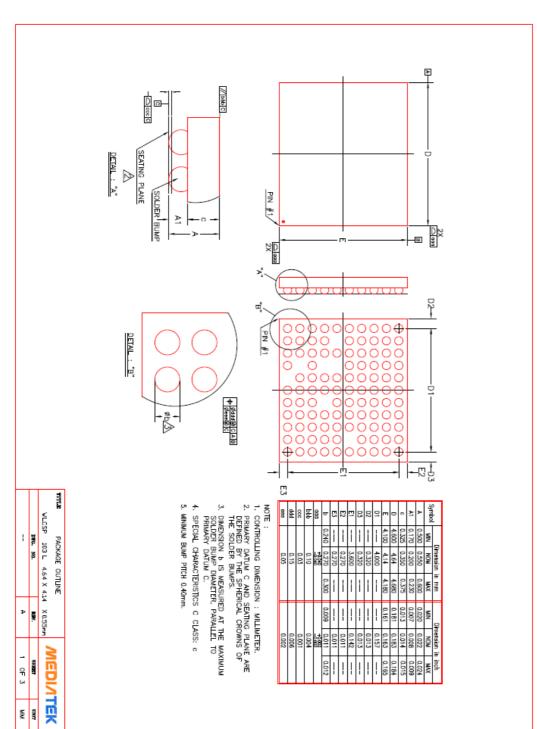



Figure 3-1. Typical operating characteristics

MT6360P Packaging 4

Outline Dimensions 4.1

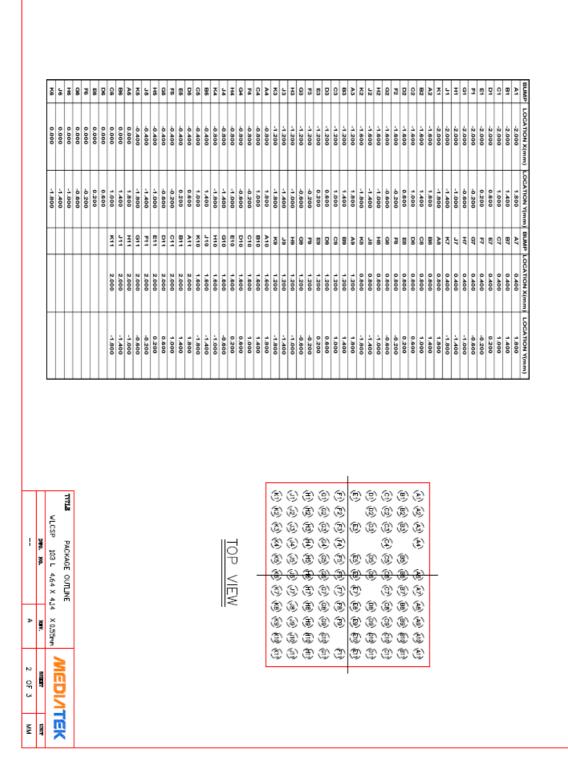


Figure 4-1. Package dimension

Exhibit 1 Terms and Conditions

Your access to and use of this document and the information contained herein (collectively this "Document") is subject to your (including the corporation or other legal entity you represent, collectively "You") acceptance of the terms and conditions set forth below ("T&C"). By using, accessing or downloading this Document, You are accepting the T&C and agree to be bound by the T&C. If You don't agree to the T&C, You may not use this Document and shall immediately destroy any copy thereof.

This Document contains information that is confidential and proprietary to MediaTek Inc. and/or its affiliates (collectively "MediaTek") or its licensors and is provided solely for Your internal use with MediaTek's chipset(s) described in this Document and shall not be used for any other purposes (including but not limited to identifying or providing evidence to support any potential patent infringement claim against MediaTek or any of MediaTek's suppliers and/or direct or indirect customers). Unauthorized use or disclosure of the information contained herein is prohibited. You agree to indemnify MediaTek for any loss or damages suffered by MediaTek for Your unauthorized use or disclosure of this Document, in whole or in part.

MediaTek and its licensors retain titles and all ownership rights in and to this Document and no license (express or implied, by estoppels or otherwise) to any intellectual propriety rights is granted hereunder. This Document is subject to change without further notification. MediaTek does not assume any responsibility arising out of or in connection with any use of, or reliance on, this Document, and specifically disclaims any and all liability, including, without limitation, consequential or incidental damages.

THIS DOCUMENT AND ANY OTHER MATERIALS OR TECHNICAL SUPPORT PROVIDED BY MEDIATEK IN CONNECTION WITH THIS DOCUMENT, IF ANY, ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE. MEDIATEK SPECIFICALLY DISCLAIMS ALL WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, COMPLETENESS OR ACCURACY AND ALL WARRANTIES ARISING OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE. MEDIATEK SHALL NOT BE RESPONSIBLE FOR ANY MEDIATEK DELIVERABLES MADE TO MEET YOUR SPECIFICATIONS OR TO CONFORM TO A PARTICULAR STANDARD OR OPEN FORUM.

Without limiting the generality of the foregoing, MediaTek makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does MediaTek assume any liability arising out of the application or use of any product, circuit or software. You agree that You are solely responsible for the designing, validating and testing Your product incorporating MediaTek's product and ensure such product meets applicable standards and any safety, security or other requirements.

The above T&C and all acts in connection with the T&C or this Document shall be governed, construed and interpreted in accordance with the laws of Taiwan, without giving effect to the principles of conflicts of law.